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ABSTRACT
/0&*37

This study commences by demonstrating the important role played by the
dispersion surfaces in the determination of the far fields of an infinitesimal
dipole in a lossless, cold magneto-ionic medium. The dispersion surfaces are
then classified, according to their shapes, for different ranges of the plasma
parameters. A comprehensive group of radiation patterns is then given in-
cluding far fields for each of the fourteen classified ranges of the plasma

parameters.
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1. INTRODUCTION

In recent years considerable attention has been directed towards the study
of radiation from sources in anisotropic media of an infinite homogeneous
nature. It is of great interest to study the case of a cold lossless medium
for different combinations of electron density and applied steady magnetic
field. The Appleton-Hartree equation constitutes the mathematical description
of the "plasma' that is often used in this analysis. This problem has been
studied extensively. [Bunkin, 1957, Kuehl, 1960, and Arbel and Felsen, 1963].
Of more specific interest are the far fields of an infinitesimal dipole.
Analytic expressions for the asymptotic fields have been available for some
time in the literature but no extensive numerical calculations have been made
for the far field patterns of a short dipole. The purpose of this study is
to briefly summarize Keuhl's method of calculation, to demonstrate the impor-
tant role the dispersion surfaces play in the calculation of the far fields
and to classify these various types of dispersion surfaces according to
specific ranges of the plasma parameters. Explicitly, these parameters are
the electron density, applied steady magnetic field and frequency, which may
be conveniently represented in terms of the dimensionless parameters X and Y,
to be defined later. The study embraces infinite, anisotropic, homogeneous
media and treats only the lossless case of a cold plasma. The paper includes
a brief description of numerical calculation techniques and the study con-
cludes with the presentation of the far field patterns of an infinitesimal

dipole calculated for several different combinations of the plasma parameters.



2. THEORETICAL CONSIDERATIONS

Maxwell's Equations in an anisotropic homogeneous medium with a relative

permittivity dyadic‘K and free space permeability Ho are:

VxH=jwé€ KE+J 6 9)

vXE=-jwpoH (2)

where E and H are electric and magnetic field vectors, J is the current density,

and w is the angular frequency. A harmonic time dependence of e
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with a Q—directed steady magnetic field; the relative per-

? is of the form
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N = electron density

B = DC magnetic flux density
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e = magnitude of electron charge

m = electron mass

ko = zﬂ/xo = free space wave number
Xo = free space wavelength




Taking curl of Equation (2) and using (1), obtain

—_ 2 [
- € = = .
vV xVxE w Ho o K E jw Po J (4)

A general solution of (4) may be expressed as

E@ =] TG,y . TG av' (5)
v
where f;(;,;')is the dyadic Green's function, the integration being performed

over the volume V containing the source currents. For an infinitesimal dipole,

J(r) = fﬁjf (') &(r) dv' 6)
v

where ﬁ is the unit dyadic, and 5(r) is the three-dimensional Dirac delta

function. Substituting (5) and (6) into (4) and using some well-known vector

identities we obtain the following equation satisfied by the dyadic Green's

function:

-V T+ve-p e T®=-j0r 05 @. ™

Now define the three-dimensional Fourier transform pair:
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Transforming Equation (7) and letting

=1
x|
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M k)=K.K 7 - (8)

one obtains

i(K)I‘(K) = -j wuoﬁ.



= -1
Premultiplying by M and taking the inverse Fourier transform one obtains:

T@E=-—2] ute &K 9)

~-1
where M = —

=l

Removing P outside the integral in its operator form,

[+ o]
T® - —i— ko (10)
M
=00
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Now |M

; we have

where s, and tz are the roots of lﬁI = 0 [ Allis et al., 1963]. Next consider

the asymptotic evaluation of the integral appearing in (10). Let

_ e-jE.;
I (r) = 5 dK_dK dK_ (12)

Integrate the above equation over KZ using the calculus of residues and
transform the x,y,z system to a r;0, spherical coordinate system. Also the
transform variables Kx' and Ky can be transformed into a polar coordinate
system P, f. After integrating over B the remaining integral can be evaluated

using the saddle point method for large kor, the result being that asymptoti-

cally
-~ 1 2 m _jatmn(e)kor
I (r) = kor mgﬁ E (-1 Amn (@) e (13)
2ﬁ2 j C
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Note that if nm is 1mag1nar%«3 o decays exponentially and there will be
no far field. n'mn and n"mn denote the first and second derivative of nm respec-
tively, evaluated at ¢mn' Here
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nm(¢), m = 1,2 (ordinary, extraordinary), are the two dispersion curves and

the saddle point condition is

%m [nm(¢m) Cos (¢m—e)] =0, m=1, and 2. i.e. %m (nm) = nmtan(¢—9). (16)

It may be shown that in general there is more than one solution of (16) and
these solutions can be identified by ¢mn where n may be 1, 2, or 3, depending

on the shape of the nm curves. The details of this evaluation are to be found

in Kuehl. The dyadic operator D must now be evaluated in the coordinate system (1,0,9),
to finally yield f;(;), the Green's dyadic, which can be regarded as a 3 x 3
matrix. To calculate the far fields of a Q—directed infinitesimal dipole only

three of these 9 components need be calculated. They are:
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The infinitesimally small dipole of dipole moment Bhlocated at the origin yields

an electric field given by

EF = joIl ™ . (21)

This equation may be employed to calculate the far field patterns after inserting

the asymptotic form of Tir) in (21).
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3. REFRACTIVE INDEX SURFACES

As was demonstrated in the previous section the refractive index surfaces,
nm(¢), m = 1, 2, play an important role in the determination of the far fields
of a source in a plasma. It is necessary to have a description of the refrac-
tive index surfaces for each mode of propagation. The shape of these surfaces
is a function of the dimensionless parameters X and Y which are used to describe
the lossless (Z = 0) medium. These surfaces are surfaces of revolution about
an axis parallel to the direction of the imposed steady magnetic field. Thus
two-dimensional plots of the curves, which are cross-sections of the surfaces
in an axial plane, serve to describe the complex refractive index surfaces.

Another form of equation (15) in terms of X and Y is:

4 |-1

2 2 2 2
) . .
22 (@ =1-x|1-3sine dvsine \" 2.0 2, . (22)

m 1-X - 1-X

These are the curves which describe the above surfaces for a lossless anisotropic
cold plasma. It is common practice to associate the subscript m = 1 with the

+ sign and the nomenclature 'ordinary wave', and m = 2 with the - sign and the
'extraordinary wave'!. For the lossless case nm2(¢) is always real for all

values of Y. It should also be noted that nm(¢) = nm(ﬂ - §) and nm(¢) = nm(-¢).
Consequently one need only calculate nm(¢) for 0 < Y < T/2, the rest of the curve
being obtained from the above relations. PFrom the last section it is seen that
the asymptotic far fields of an infinitesimal dipole are expressible in terms of
nm(¢), and its first and second derivatives evaluated at the saddle points.
Deschamps and Kesler [1964] have recently shown that the far fields of a source

in a magnetoplasma may be expressed by
Ty - = M gtem, F
F(r) = i: 7= (B e M) FL(m) (23)

where h is the Gaussian radius of curvature of the refractive index surfaces,

\fi is a single vector representing electric and magnetic source current densities,



ﬁﬁ is the magnetic eigenvector and Fk(r) is the characteristic (source free)
field vector. The important point to note is that the Gaussian radius of
curvature of the complex refractive index surfaces is a dominating factor in
the determination of the far fields.

It is thus desirable to have a general knowledge of the characteristic
shapes of the nm(¢) curves that will be generated by different combinations
of electron density and imposed steady magnetic field..

Clemmow and Mulally, [1955], have classified the refractive index curves
into eight distinct types, according to certain features of their shapes. These
will henceforth. be referred to as the characteristic shapes. The regions of
the X-Y plane to which these characteristic shapes correspond were given
analytically. This classification is extended and clarified somewhat in this
study.

The graph of FPigure (1) shows the division of the X-Y plane into fourteen
separate regions. Each region is numbered according to the kind of charac-
teristic shape of the refractive index surface that exists for those ranges
of values of X and Y. The numbers therein refer to the characteristic shapes
shown in the lower right hand part of the graph. The numbers are subscripted
O or E indicating whether the characteristic shape is associated with the
ordinary or extraordinary wave. Only the real parts of the nm(¢) curves are
shown. The region where the curves are completely imaginary for all ¢ has
not been numbered (i.e.; X > 1+Y, Y < 1). There are no far fields generated
when the medium parameters (X,Y) are in this region.

It should be noted that characteristic shapes numbered 2,4,6 and 8 have
points of inflection for some values of U, while the remaining 4 curves have
not. Furthermore, curves 1,2,3 and 4 are associated with both ordinary and
extraordinary waves while characteristic shapes numbered 56,7 and 8 are
associated exclusively with extraordinary waves.

Some examples of specific values of (X,Y) will now be given:

(a) X =100, Y = 10. This falls within the region marked 8 This means

E°
that only n2(¢) is real and has the characteristic shape shown by
curve 8. Thus only an extraordinary wave exists in the far field.
Since n1(¢) is entirely imaginary for all § the ordinary wave does

not contribute to the far field.




(b) X =1.5, Y =10 lies in the region marked 40 and 7E. The ordinary
wave is associated with characteristic shape 4 and the extraordinary
wave with shape 7.
For a given value of m there may exist more than one saddle point, that
is, more than one solution to Equation (16). There can be either one, two
or three saddle points for a given m. The existence of more than one saddle
point occurs for some values of @ only for curves containing points of
inflection; i.e., those curves numbered 2;4,6 and 8. When these curves are
encountered there will be a merging of two saddle points at the point of
inflection for some value of @ and the single saddle point asymptotic
evaluation is no longer valid; one must resort to the double saddle point
method of evaluation which involves the Airy integral type of representation,
[Arbel and Felsen, 1963].
It is to be noted that the present study extends Clemmow and Mulally's

description in that the ordinary and extraordinary waves are associated with

the characteristic shapes of the refractive index curves of each of the fourteen

regions of the X-Y plane.



4. NUMERICAL CALCULATIONS

10

The numerical calculation of the far fields of a z-directed dipole, i.e.,

J =% o) (;), was carried out in four separate stages, for eighteen different

sets of (X,Y) as shown on the graph of the X-Y plane embracing all the

fourteen regions.

(a)

(b)

(c)

(@)

Computation of refractive index curves was done on the University
of I1linois IBM 7094 computer using Equation (22).

The curves nl(¢) and n2(¢) were then plotted. The real values of
nm(¢) indicate propagation while imaginary values indicate cutoff,
as seen in Equation (14-b).

Computation of the saddle points was accomplished by using a
geometrical construction [Mittra and Deschamps, 1962 ] for the
solution of Equation (16) and then iterating to obtain more precise
solutions by the Newton-Raphson method. The iterated saddle points
were then used as input data to the program for the computation of
the far fields.

The saddle point solutions ¢mn for a fixed angle O were used in
Equations (17) through (21) to compute the electric field which was
then transformed into spherical components.

In certain cases (where ¢mn = @) at 6=0 and /2 Equation (14-a) is
an indeterminate form. A modified approach for the calculation of

Amn as given by Kuehl is then employed.

Throughout the calculation kor = 100 was used. It should be pointed out

that in general the total fields may be quite dependent on the magnitude of

kor since it affects the phase between the ordinary and extraordinary waves.

This is seen in Equation (13). In some cases the individual ordinary and

extraordinary components of the electric field behave in a peculiar fashion,

but the vector sum yields total fields of a familiar behavior. This is espe-

cially true in the case of a near-isotropic plasma (set #4).
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5. FAR FIELD PATTERNS

At the end of this study the far fields of a ngirected dipole are given
for 18 different combinations of the plasma parameters X and Y. These 18
points are shown in Figure 1.

The dispersion surfaces are shown for m = 1 and ﬁ = 2, calculated by
Equation (22). Under each dispersion curve are the corresponding ordinary or
extraordinary components of the electric field, given in spherical coordinates.

They are designated E 1’ and E(P1 for the ordinary wave components and

R1’ Ee
similarly for the extraordinary wave components. Broken lines indicate that

the computation yields infinities. These infinities occur due to the dispersion
curves containing the points of inflection. It should be pointed out that the
double saddle point method of evaluation was not used at these points of inflec-
tion. The total far fields for kor = 100 are shown in the right hand column.
All the fields patterns are shown only for 0 < 9 <7/2, the rest of the pattern
being found through symmetry properties. ’

It is interesting to note the behavior of EeT at § = T/2 in set #8, which
is fairly close to the free space condition. This result should be compared
with set #4. Although the plasma parameters of set #8 are still near-isotropic,
the far-field pattern differs interestingly from the isotropic pattern.

It should be noted that if the dispersion surface is completely imaginary
for all Y, it is not shown at all because no far fields are generated for that

value of m. The total far fields are those shown for the other value of m

and hence the "total fields" column is left blank to avoid repetition.
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6. CONCLUSIONS

This study has presented a comprehensive classification of the dispersion
curves, and Pigure (1) offers a useful graphical representation of this classi-
fication. Since the shapes of these curves play an important role in the
calculation of the far fields, this classification permits a rough prediction
of some of the pattern characteristics of the far fields of a dipole for any
choice of the plasma parameters X and Y. It can also be useful in the
selection of plasma parameters in practical cases where only the ordinary or
extraordinary wave is desired. This may find application in the study of

pattern synthesis for sources in anisotropic media.
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DISPERSION SURFACES (REAL PART)
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DISPERSION SURFACES (REAL PART)
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DISPERSION SURFACES (REAL PART)
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